Company Infos   About MBE  Research Systems  Production Systems   Components RIBER   Effusion cells  Product guides   Components VG Semicon  Scientific Data


Production Systems RIBER MBE 49

SELECTION GUIDE

Select your production system according to your application and wafer size.
Riber offers a complete range of MBE, gas-source MBE and CBE systems for production applications.

  Multi-1" Multi-2" Multi-3" Multi-4" Multi-6" Multi-8"
CdHgTe Epineat Epineat        
InSb Epineat Epineat        
ZnSe Epineat Epineat        
GaAs Epineat MBE49 MBE49 MBE49 MBE6000 MBE7000
InP Epineat MBE49 MBE49 MBE49 MBE6000  
GaN Epineat Epineat MBE49 MBE49    

The Riber's R&D, manufacturing, and service capabilities allow the company to enter the new millennium confident in its ability to grow with the booming markets it serves.

Riber is the technological leader of the MBE production systems market. The multisubstrate epitaxial reactors are used today for the mass production of compound semiconductors products (based on GaAs and InP substrates) for the electronics and optoelectronics industries. Highest quality material, grown at high throughput, with ergonomically designed equipment, are key objectives of Riber in the design and manufacture of its production machines. In 1991, sixteen-years after the design of the first commercial MBE instrument (MBE 500), Riber introduced to the market the first fully-automated multi-4" MBE production machine, the MBE 49.

This machine integrated the many technical advances made on an installed base of 300 MBE research systems and, even today, no other system offers such complete and reliable automation. This technical breakthrough enabled the equipment to be used non-stop, leading to increased efficiency, decreased costs and minimum risk of misoperation, thus paving the way for today's use of MBE as the leading mass-production epitaxy technique.
In 1996, Riber introduced a new version of the MBE 49 with a wafer load capacity of 4×4 inches, and two years later the company manufactured the MBE 6000, the first 4×6-inch MBE production machine. Based substantially on the design of the MBE 6000, the MBE 7000 is the latest MBE production machine model, and this equipment has been carefully designed to provide the stringent environment required to achieve uniform, precise, and repeatable epitaxial growth of established structures such as field effect transistors (MESFETs), high electron mobility transistors (HEMTs), heterojuction bipolar transistors (HBTs), and optoelectronic devices (lasers). Riber believes that this 7x6-inch system enables one of the lowest costs of ownership of any epitaxial machine on the market today for the production of high quality epiwafers. Cost of ownership is based on throughput, yield, operation costs and capital costs:


Throughput
The major components of throughput are wafer load capacity, epitaxial process time (which is the time needed for the deposition process to take place) and uptime (which is the amount of time a machine can remain in operation without turn around). The duration of growth campaigns has a direct impact on the overall process efficiency. The performances of Riber's machines remain constant, even over long production campaigns. After the system has been stopped, either to recharge the sources or for regular maintenance, the time to restart production can vary from two days (e.g. if a cell has been recharged rapidly) to two weeks. It is therefore vitally important to reduce the number of such stoppages. Moreover, the design of Riber's bakeout systems accelerates the restart procedure.

The combination of (1) increased wafer load capacities, (2) relatively short epitaxial process times ranging from approximately one hour for epiwafers for radio frequency devices called high electron mobility transistors, or HEMTs, to approximately eight hours for epiwafers for some pump laser diodes, and (3) high uptime due to the ability of the reactor to operate continuously for up to eight months without cleaning and maintenance, enable annual throughputs of up to 28,000 four-inch wafers for HEMT production and 4,000 three-inch wafers for the manufacture of pump laser diodes. Because each four-inch epiwafer for HEMT production can be used to manufacture up to 800 HEMTs, this means that up to 22.4 million HEMTs can be manufactured per year from epiwafers produced with a Riber multi-4 inch production MBE machine.

Yield
The epi reactor effusion cell and shutter design allow for low epiwafer surface defect densities and highly uniform epilayers enabling yields as high as 95%. All uniformities (thickness, composition, dopant concentration) are unequaled by any other system, all being better than 1%, both within a wafer and wafer-to-wafer. This leads to higher device efficiency and greater stability of device performance.

Operation costs
Operation costs are reduced by lower maintenance costs and the use of solid source materials, which are substantially cheaper than the gas source materials used in MOCVD. Moreover, no expensive safety peripherals (e.g. scrubber or toxic gas monitoring system) are required.

Capital costs
Capital costs, represented by the cost of the MBE production system itself and related components, are competitive with MBE and MOCVD machines manufactured by Riber's competitors.

Riber's MBE production machines enable the company's customers to use either solid or gas sources in accordance with their particular production objectives. MBE techniques using gas sources or a combination of gas and solid are used to make epiwafers for the production of electronic devices with enhanced performance capabilities through the use of lower expitaxial process temperatures, to increase the possibilities of higher epitaxial growth rates than currently possible with MBE using solid source materials, and to make epiwafers for the production of high quality compound semiconductors made up of four elements, such as GaInAsP.


      
    

copyright EpiServe GmbH 2017, all rights reserved